ordinateur quantique

Et lutte contre les pseudo-sciences et les obscurantismes

Message par canardos » 17 Déc 2007, 08:43

a écrit :

Le 15 décembre 2007

[center]Ordinateur quantique : des photons ont factorisé un nombre ![/center]

Par Laurent Sacco, Futura-Sciences

Deux équipes de chercheurs sont arrivées à effectuer la factorisation de 15 en nombres premiers à l’aide d’un calcul quantique. C’est la première fois qu’on arrive à réaliser ce calcul, reposant sur l’algorithme de Peter Shor, avec des photons.

La factorisation de 15 en nombres premiers, c'est-à-dire calculer que 15 est bien égal à 3 fois 5 n’est évidemment pas une grande prouesse mathématique, pas plus qu’informatique. C’est pourtant la première fois que cela a pu être réalisé avec des photons en effectuant ce qu’on appelle un calcul quantique, par opposition au calcul classique des ordinateurs d'aujourd'hui.

En 2001, le journal Nature avait déjà annoncé la réalisation d’un tel calcul. Cependant, les chercheurs de l’époque avaient employé non pas des photons mais sept noyaux dans une molécule.

Dans les ordinateurs classiques, les calculs reposent sur des opérations en binaire avec des 0 et des 1. Un ordinateur quantique manipule aussi des séries de 0 et de 1 mais il profite d'un principe fondamental de la mécanique quantique : la superposition des états.

Un recours à la magie quantique

Ce principe étrange est au cœur des célèbres paradoxes EPR et du chat de Schrödinger et c’est sur lui que repose le phénomène d’intrication quantique. Alors que les mémoires d’un ordinateur classique opèrent avec une unité d’information qui est soit dans l’état 0, soit dans l’état 1, un ordinateur quantique peut opérer avec une superposition d’états qui sont donc d’une certaine façon à la fois dans l’état 0 et 1 !

Si l’on se représente ce phénomène par une flèche pouvant se retrouver à la surface d’une sphère de rayon un, alors un état classique, un bit d’information, pointe soit vers le pôle sud (0) soit vers le pôle nord (1). Avec un bit d’information quantique, un qubit, la flèche peut se retrouver n’importe où à la surface de la sphère et la probabilité d’obtenir un état 0 ou 1 lors d’une mesure dépendra de la latitude de la flèche sur la sphère. Tant qu’une mesure n’aura pas été effectuée, on aura une superposition quantique des deux états binaires. Un résumé de cette situation se trouve dans le schéma ci-dessous.

user posted image

Un ordinateur quantique toujours hypothétique

En 1994, Peter Shor a trouvé un algorithme mathématique exploitant les propriétés du calcul quantique qui permet de trouver la factorisation en nombres premiers d’un entier donné. En cryptologie, c’est extrêmement important. Il se trouve qu’un ordinateur quantique employant cet algorithme ferait mieux et plus vite qu’un ordinateur classique. De manière générale, ces ordinateurs seraient capables de prouesses à faire pâlir (s’ils le pouvaient...) les ordinateurs classiques. C’est un enjeu de la recherche actuelle que de créer un ordinateur quantique vraiment performant mais on n’y est pas encore.

C’est pourquoi la performance des deux équipes, dont l’une est à l’Université du Queensland en Australie, est si intéressante. Elles sont bel et bien parvenues à mettre en œuvre avec des laser l’algorithme de Shor, pour trouver la factorisation en nombres premiers de 15. C’est un petit pas de plus vers un ordinateur quantique mais il reste encore de nombreux problèmes à surmonter dont celui, redoutable, de la décohérence. Les deux articles sur ces expériences sont sur Arxiv (voir, comme on peut le constater avec les liens sous l'article).

canardos
 
Message(s) : 18
Inscription : 23 Déc 2005, 16:16

Message par canardos » 18 Déc 2007, 12:43


je ne sais pas si tu vas y voir plus clair....

le paradoxe EPR expliqué dans wikipedia:

a écrit :

[center]Paradoxe EPR[/center]

Le paradoxe Einstein-Podolsky-Rosen, abrégé en EPR, est une expérience de pensée élaborée par Albert Einstein, Boris Podolsky, et Nathan Rosen, et dont le but premier était de réfuter l'interprétation de Copenhague de la physique quantique.

L'interprétation de Copenhague s'oppose à l'existence d'un quelconque état d'un système quantique avant toute mesure. En effet, il n'existe pas de preuve que cet état existe avant son observation et le supposer amène à certaines contradictions.

Or, si deux particules sont émises et qu'une relation de conservation existe entre une de leurs propriétés (par exemple la somme de leurs spins doit être 0), la connaissance d'une des propriétés de l'une nous informe instantanément sur l'état de l'autre particule. Mais cette dernière peut à l'instant de la mesure se trouver à plusieurs kilomètres, et ne peut être informée de l'état de la première ! Comment croire dans ces conditions que cette propriété n'était pas déterminée dès le départ, en contradiction avec la représentation de Copenhague ?

Ce paradoxe fut élaboré par Albert Einstein et deux de ses collaborateurs Boris Podolsky et Nathan Rosen pour soulever ce qui semblait apparaître comme une contradiction dans la mécanique quantique, ou du moins une contradiction avec au moins l'une des trois hypothèses suivantes :

l'impossibilité pour un signal de dépasser la vitesse c (causalité relativiste) ;
la mécanique quantique est complète et décrit entièrement la réalité (pas de variables cachées) ;
les deux particules éloignées forment des éléments indépendants de la réalité (Non localité).


L'intrication : deux interprétations possibles
 
Soient deux photons intriqués, polarisés perpendiculairement l'un par rapport à l'autre. Ces photons sont dans un état superposé de deux possibilités : 1) Le premier photon est polarisé verticalement et le second horizontalement 2) L'état inverse. Alors la mesure de la polarisation d'un photon implique nécessairement que le second photon sera polarisé perpendiculairement au premier, quel que soit l'état de polarisation mesuré pour un photon (que l'on ne peut prévoir).

En effet, selon la mécanique quantique, avant la mesure, la polarisation de ces photons est indéterminée. Les photons sont dans un état superposé entre les polarisations horizontale et verticale, c’est-à-dire qu'il y a une chance sur deux d'obtenir une polarisation horizontale lors de la mesure, et une chance sur deux d'obtenir une polarisation verticale.

Étant donné que l'état de polarisation de chaque photon semble aléatoirement déterminé au moment de la mesure, comment expliquer que les deux photons soient toujours perpendiculaires ? Deux interprétations sont possibles :

la mesure de la polarisation d'un des photons entraîne une polarisation du second photon perpendiculaire à celle du premier. C'est le point de vue de Niels Bohr quand il en a débattu en 1930 au congrès de Bruxelles.
l'état des deux photons est déterminé avant la mesure, au moment de leur intrication, et est révélé au moment de la mesure. C'est la position d'Albert Einstein, partisan du déterminisme. Pour lui, les états des particules existaient avant la mesure. Si deux particules sont corrélées, c'est donc parce qu'elles l'étaient dès le début, et non au moment de la mesure.

user posted image

Le paradoxe 

Ce n'était en apparence qu'un débat philosophique entre deux manières de voir des phénomènes car ces deux points de vue donnaient a priori le même résultat. Mais dans certaines conditions particulières ces deux conceptions n'étaient pas compatibles. Albert Einstein a élaboré un paradoxe: le paradoxe EPR, du nom de ses inventeurs.

Le principe du paradoxe est de mesurer simultanément (dans un intervalle de temps suffisamment court pour que l'information n'ait pas le temps de se propager d'une particule à l'autre) deux grandeurs s'excluant, telles que la position et la vitesse, ce qui serait en violation avec les inégalités d'Heisenberg, et qui donnerait plus d'information que ce que la mécanique quantique prétend décrire, pour prouver que cette théorie est incomplète.

Einstein propose ensuite d'améliorer la mécanique quantique en introduisant une théorie utilisant des variables cachées.


Le débat entre Einstein et Bohr

Niels Bohr a répondu immédiatement en rejetant les variables cachées et en insistant sur le fait que les états quantiques n'existent pas tant qu'ils n'ont pas été mesurés. Avant la mesure, on ne peut que prévoir des probabilités d'obtenir certaines valeurs pour un état quantique. Il n'y a de déterminisme dans une mesure que si la probabilité de l'observer est de 1.

Le débat entre Einstein et Bohr sur ce paradoxe a duré 20 ans, jusqu'à la fin de leur vie.


Les expériences

En 1964, John Stewart Bell produisit un théorème permettant de quantifier les implications du paradoxe EPR, ouvrant la voie à l'expérimentation : dès lors la résolution du paradoxe EPR pouvait devenir une question expérimentale, plutôt qu'un choix épistémologique.

La technologie de l'époque ne permettait pas de réaliser une expérience testant les inégalités de Bell, mais Alain Aspect a pu le réaliser en 1981, puis en 1982, à Orsay, confirmant la validité des prédictions de la mécanique quantique dans le cas du paradoxe EPR. Cette expérience d'Aspect procédait d'une idée qu'il avait publiée dès 1976[1]mais que personne n'avait reprise depuis.

En 1988-1989, d'autres expériences (Maryland, Rochester[2][3]), encore plus perfectionnées, ont permis de tester les intrications à très grande distance et de combler des petites failles expérimentales laissées ouvertes par les expériences d'Orsay.

Toutefois, si ces expériences impliquent que l'on renonce à l'une des trois hypothèses (on s'est décidé pour la localité), elle ne permettent nullement la transmission d'un signal plus vite que la lumière (sans quoi d'ailleurs soit la causalité, soit la relativité serait violée).


Un enthousiasme encombrant

Un colloque organisé de façon hâtive à Cordoue — non par des physiciens, bien que plusieurs fussent invités — fut l'occasion pour un certain nombre de « parapsychologues » ou spécialistes des « sciences occultes » de se réclamer de cette expérience pour alléguer de la possibilité théorique de phénomènes comme télépathie, télékinésie, synchronicité et autres, au milieu de physiciens qui ne pouvaient démentir. Cette excitation explicable sans doute par la nouveauté du propos se calma par la suite, et l'effet EPR fait aujourd'hui partie du quotidien de la physique.

Le chercheur Étienne Klein donne une métaphore romantique de l'effet EPR : Deux cœurs qui ont interagi dans le passé ne peuvent plus être considérés de la même manière que s'ils ne s'étaient jamais rencontrés. Marqués à jamais par leur rencontre, ils forment un tout inséparable. Cette interprétation n'est pas si dépourvue d'intérêt scientifique qu'il n'y paraît: Étienne Klein, dans ses travaux de vulgarisation, a toujours tenté de montrer comment les phénomènes de physique quantique tenus pour des paradoxes de cette discipline ressemblent à des effets très familiers.

L'erreur commune selon laquelle l'effet EPR pourrait servir à transmettre de l'information instantanément est répandue jusque dans la littérature pour enfants: dans À la croisée des mondes, les espions communiquent (y compris entre différents univers parallèles) avec des dispositifs exploitant cet effet.


Des conclusions plus sereines

Les points établis par cette expérience sont les suivants :

Les inégalités de Bell sont violées (ce qui implique que l'on exclut les théories à variables cachées locales plus clairement les théories aux variables aléatoires partagées) ;
Il n'existe donc pas de variables cachées locales (dans le sens de créé localement avant d'être séparé ente les participants) contrairement à ce qu'espérait Einstein;
Si on veut conserver l'hypothèse d'une limite à la vitesse de transmission d'une information (c, vitesse de la lumière), il faut admettre que deux particules créées conjointement, même géographiquement séparées, peuvent continuer à se comporter comme un système unique (non-localité).
Finalement, le principe de causalité reste valable, du fait que on peut considérer qu'il n'y a pas de lien de cause à effet entre l'entrée de la partie A et le résultat de la partie B et vice versa, et que les résultats de mesure des deux particules sont des événements indépendants distincts.


Références
↑ Proposed experiment to test the non-separability of quantum mechanics, A. Aspect, Phys. Rev. D 14, 1944–1951 (1976)
↑ Shih, Y. H. & Alley, C. O. Phys. Rev. Lett. 61, 2921–2924 (1988)
↑ Ou, Z. Y. & Mandel, L. Phys. Rev. Lett. 61, 50–53 (1988)



quand au chat de schrodinger, toujours wikipedia:

a écrit :

[center]Chat de Schrödinger[/center]

L'expérience du chat de Schrödinger fut imaginée en 1935 par le physicien Erwin Schrödinger, afin de mettre en évidence des lacunes supposées de l'interprétation de Copenhague de la physique quantique, et particulièrement mettre en évidence le problème de la mesure.

La mécanique quantique est relativement difficile à concevoir car sa description du monde repose sur des amplitudes de probabilité (fonctions d'onde). Ces fonctions d'ondes peuvent se trouver en combinaison linéaire, donnant lieu à des « états superposés ». Cependant, lors d'une opération dite de « mesure » l'objet quantique sera trouvé dans un état déterminé ; la fonction d'onde donne les probabilités de trouver l'objet dans tel ou tel état.

C'est la mesure qui perturbe le système et le fait bifurquer d'un état quantique superposé (atome à la fois intact et désintégré par exemple… mais avec une probabilité de désintégration dans un intervalle de temps donné qui, elle, est parfaitement déterminée) vers un état mesuré. Cet état ne préexiste pas à la mesure : c'est la mesure qui semble le faire advenir.

Toutefois, la notion de mesure ou de bifurcation n'apparaît pas explicitement ni même indirectement dans le formalisme quantique, et les tentatives d'en faire surgir cette notion se heurtent à d'extrêmes difficultés. En conséquence, certains physiciens n'accordent aucune réalité physique au concept de mesure ou d'observation. Pour eux, les états superposés ne s'effondrent (ou ne « bifurquent ») pas, et l'état mesuré n'existe pas réellement (voir par exemple : Hugh Everett).

C'est pour faire apparaître le caractère paradoxal de cette position et pour poser de manière frappante le problème, que Schrödinger a imaginé cette expérience de pensée.


  « L'expérience » 

Une illustration de l'expérience dite du chat de Schrödinger.Erwin Schrödinger a donc imaginé une expérience dans laquelle un chat est enfermé dans une boîte fermée avec un dispositif qui tue l'animal dès qu'il détecte la désintégration d'un atome d'un corps radioactif (par exemple : un détecteur de radioactivité type Geiger, relié à un interrupteur provoquant la chute d'un marteau cassant une fiole de poison gazeux).

Si les probabilités indiquent qu'une désintégration a une chance sur deux d'avoir eu lieu au bout d'une minute, la mécanique quantique indique que, tant que l'observation n'est pas faite, l'atome est simultanément dans deux états (intact/désintégré). Or le mécanisme imaginé par Erwin Schrödinger lie l'état du chat (mort ou vivant) à l'état des particules radioactives, de sorte que le chat serait simultanément dans deux états (l'état mort et l'état vivant), jusqu'à ce que l'ouverture de la boîte (l'observation) déclenche le choix entre les deux états. Du coup, on ne peut absolument pas dire si le chat est mort ou non au bout d'une minute.

La difficulté principale tient donc dans le fait que si l'on est généralement prêt à accepter ce genre de situation pour une particule, l'esprit refuse d'accepter facilement une situation qui semble aussi peu naturelle quand il s'agit d'un objet plus familier comme un chat.


Pourquoi le chat de Schrödinger ? 

Cette expérience n'a jamais été réalisée sur un chat, car :

les conditions techniques pour préserver l'état superposé du chat sont très difficiles ;
et même si ces conditions sont atteintes, il s'agit d'une pure expérience de pensée, non réalisable même en principe. En effet, on ne pourra jamais mettre en évidence directement, ou mesurer, que le chat est à la fois mort et vivant car le fait d'essayer de connaître son état provoquera nécessairement l'effondrement de la fonction d'onde.
En revanche, une première expérience a été réalisée en 1996[1], et une deuxième a été réalisée en août 2007 sur des photons par des chercheurs de l'institut d'optique Paris Sud (dont le français Phillipe Grangier) [2]

En fait, le but est surtout de marquer les esprits : si la théorie quantique autorise à un chat d'être à la fois mort et vivant, c'est ou bien qu'elle est erronée, ou bien qu'il va falloir reconsidérer tous nos préjugés.

Schrödinger lui-même a imaginé cette expérience pour réfuter l'interprétation de Copenhague de la mécanique quantique, qui conduisait à un chat à la fois mort et vivant. Einstein avait fait la même expérience de pensée avec un baril de poudre. Schrödinger et Einstein pensaient que la possibilité du chat mort-vivant démontrait que l'interprétation de la fonction d'onde par Max Born était incomplète. Nous verrons dans la partie « quelle solution ? » que cette situation souligne bien l'étrangeté de la mécanique quantique, mais ne la réfute pas.

Il est évident que le fait que l'interprétation orthodoxe de la physique quantique mène à un chat à la fois mort et vivant montre que la mécanique quantique obéit à des lois souvent contraires à notre intuition. Pire, on se rend compte que la question n'est pas « comment est-ce possible dans le monde quantique ? » mais « comment est-ce impossible dans le monde réel ? ».

Anecdotiquement, on peut aussi se demander (c'est ce que fait Étienne Klein dans Il était sept fois la révolution) d'où vient le choix du chat pour cette expérience de pensée. Sciences et Avenir, dans un numéro hors-série consacré au chat de Schrödinger, propose l'hypothèse d'une référence de la part de Schrödinger au chat du Cheshire.


Est-il exact de dire que le chat est mort et vivant ? 

L'affirmation « Le chat est mort et vivant » est effectivement déroutante, et provoque souvent des blagues sur le « chat mort-vivant ». Notre intuition nous dit que les phrases « le chat est mort » et « le chat est vivant » sont chacune la négation de l'autre. En fait, il existe une troisième possibilité : le chat peut être dans un état de superposition, dans lequel il cumule plusieurs états classiques incompatibles. Il n'y a pas de problème logique (le principe du tiers exclu n'est pas remis en cause), c'est juste qu'un objet quantique peut avoir des propriétés contredisant notre expérience quotidienne.

Pour éviter les abus de langage sur le « chat mort-vivant », on peut préfèrer dire que le chat est dans un état où les catégorisations habituelles (ici la vie ou la mort) perdent leur sens.

Mais on peut, comme Einstein, refuser d'admettre que le chat n'ait pas d'état défini tant qu'on n'opère pas d'observation, et supposer que si on voit le chat vivant, il l'a été depuis son enfermement. Einstein anticipa sur l'objection de Niels Bohr « Le mystique positiviste va rétorquer qu'on ne peut spéculer sur l'état du chat tant qu'on ne regarde pas sous prétexte que cela ne serait pas scientifique ».

Même en admettant que l'état du chat découle directement de celui de la particule, d'un point de vue sémantique, dire que le chat est mort et vivant n'est pas tout à fait légitime : il est plus précisément , si on emploie la notation bra-ket de Paul Dirac. Et encore, les coefficients devant les vecteurs « mort » et « vivant » pourraient être des nombres complexes. Le « et » du langage courant n'a pas vraiment de sens dans cette situation, le « et » logique serait à redéfinir. La question n'est pas exclusive à la physique quantique : dans le cas du coefficient , demander si le chat est vivant et s'il est mort est équivalent à demander si à 1 h 30 la petite aiguille d'une horloge est horizontale et si elle est verticale.


Comment est-il possible d'être dans plusieurs états à la fois ? 

C'est justement l'équation de Schrödinger qui autorise ces superpositions : cette équation, régissant les états possibles d'une particule étudiée dans le cadre de la physique quantique, est linéaire, ce qui entraîne que pour deux états possibles d'une particule, la combinaison de ces deux états est également un état possible. L'observation provoque en revanche la réduction à un seul état.

Si l'on parvient à provoquer une dépendance directe entre l'état d'une particule et la vie du chat, on devrait pouvoir mettre le chat dans un état superposé, mort et vivant, jusqu'à l'observation, qui le réduira à un seul état.


Quelle solution ?

Différentes options proposent de résoudre ce paradoxe :


Théorie de la décohérence 

Un certain nombre de théoriciens quantiques affirment que l'état de superposition ne peut être maintenu qu'en l'absence d'interactions avec l'environnement qui « déclenche » le choix entre les deux états (mort ou vivant). C'est la théorie de la décohérence. La rupture n'est pas provoquée par une action « consciente », que nous interprétons comme une « mesure », mais par des interactions physiques avec l'environnement, de sorte que la cohérence est rompue d'autant plus vite qu'il y a plus d'interactions. À l'échelle macroscopique, celui des milliards de milliards de particules, la rupture se produit donc pratiquement instantanément. Autrement dit, l'état de superposition ne peut être maintenu que pour des objets de très petite taille (quelques particules). La décohérence se produit indépendamment de la présence d'un observateur, ou même d'une mesure. Il n'y a donc pas de paradoxe : le chat se situe dans un état déterminé bien avant que la boîte ne soit ouverte. Cette théorie est notamment défendue par les physiciens Roland Omnès, et le prix Nobel Murray Gell-Mann.


Théorie de la décohérence avec paramètres cachés

Une variante de la théorie de la décohérence est défendue notamment par les physiciens Roger Penrose, Rimini, Ghirardi et Weber. Elle part de la constatation que la décohérence n'est démontrée à partir des lois quantiques que dans des cas précis, et en faisant des hypothèses simplificatrices et ayant une teneur arbitraire (histoires à « gros grains »). De plus, les lois quantiques étant fondamentalement linéaires, et la décohérence étant non linéaire par essence, obtenir la seconde à partir des premières paraît hautement suspect aux yeux de ces physiciens. Les lois quantiques ne seraient donc pas capable à elles seules d'expliquer la décohérence. Ces auteurs introduisent donc des paramètres physiques supplémentaires dans les lois quantiques (action de la gravitation par exemple pour Penrose) pour expliquer la décohérence, qui se produit toujours indépendamment de la présence d'un observateur, ou même d'une mesure.
Cette théorie présente l'avantage par rapport à la précédente d'apporter une réponse claire et objective à la question « que se passe-t-il entre le niveau microscopique et le niveau macroscopique expliquant la décohérence ». L'inconvénient est que ces paramètres supplémentaires, bien que compatibles avec les expériences connues, ne correspondent à aucune théorie complète et bien établie à ce jour.


Approche positiviste

De nombreux physiciens positivistes, bien représentés par Werner Heisenberg ou Stephen Hawking, pensent que la fonction d'onde ne décrit pas la réalité en elle-même, mais uniquement ce que nous connaissons de celle-ci. Autrement dit, les lois quantiques ne sont utiles que pour calculer et prédire le résultat d'une expérience, mais pas pour décrire la réalité. Dans cette hypothèse, l'état superposé du chat n'est pas un état « réel » et il n'y a pas lieu de philosopher à son sujet (d'où la célèbre phrase de Stephen Hawking « Quand j'entends « chat de Schrödinger », je sors mon révolver »). De même, « l'effondrement de la fonction d'onde » n'a aucune réalité, et décrit simplement le changement de connaissance que nous avons du système. Le paradoxe, dans cette approche toujours assez répandue parmi les physiciens, est donc évacué.


Théorie des univers parallèles

La théorie des univers parallèles introduite par Hugh Everett prend le contre-pied de l'approche positiviste et stipule que la fonction d'onde décrit la réalité, et toute la réalité. Cette approche permet de décrire séparément les deux états simultanés et leur donne une double réalité qui semblait avoir disparu, dissoute dans le paradoxe (plus exactement deux réalités dans deux univers complètement parallèles - et sans doute incapables de communiquer l'un avec l'autre une fois totalement séparés). Il convient de noter que cette théorie ne se prononce pas sur la question de savoir s'il y a duplication de la réalité (many-worlds) ou duplication au contraire des observateurs de cette même réalité (many-minds), puisqu'elles ne présentent pas de différence fonctionnelle.

Malgré sa complexité et les doutes sur sa réfutabilité, cette théorie emporte l'adhésion de nombreux physiciens, non convaincus par la théorie de la décohérence, non positivistes, et pensant que les lois quantiques sont exactes et complètes.


Reformulation radicale de la théorie quantique 

Le paradoxe du chat prend sa source dans la formulation même des lois quantiques. Si une théorie alternative, formulée différemment, peut être établie, alors le paradoxe disparaît de lui-même. C'est le cas pour la théorie de David Bohm, inspirée des idées de Louis de Broglie, qui reproduit tous les phénomènes connus de la physique quantique dans une approche réaliste, à variables cachées (non locales). Dans cette théorie, il n'existe ni superposition des particules, ni effondrement de la fonction d'onde, et donc le paradoxe du Chat est considéré de ce point de vue comme un artefact d'une théorie mal formulée. Bien que la théorie de Bohm réussisse à reproduire tous les phénomènes quantiques connus et qu'aucun défaut objectif de cette théorie n'ai été mis en évidence, elle est assez peu reconnue par la communauté des physiciens. Elle est pourtant considérée par celle-ci comme un exemple intéressant, et même un paradigme d'une théorie à variables cachées non locales.


Théorie de l'influence de la conscience 

Un prix Nobel de physique 1963, Eugene Wigner, soutient la thèse de l'interaction de la conscience, dans la décohérence (cessation de la superposition d'état). Dans cette interprétation, ce ne serait pas une mesure, ou des interactions physiques, mais la conscience de l'observateur qui « déciderait » finalement si le chat est mort ou vivant. En regardant par le hublot, l'œil (dans ce cas, c'est lui l'appareil de mesure) se met dans une superposition d'états :

d'un côté, un état A : « uranium désintégré, détecteur excité, marteau baissé, fiole cassée, chat mort » ;
de l'autre, un état B : « uranium intact, détecteur non excité, marteau levé, fiole entière, chat vivant » ;
le nerf optique achemine au cerveau une onde qui est aussi dans une superposition des états A et B, et les cellules réceptrices du cerveau suivent le mouvement. C'est alors que la conscience, brutalement, fait cesser le double jeu, obligeant la situation à passer dans l'état A ou dans l'état B (mais attention : rien ne nous dit POURQUOI ce serait A ou 8) .
Comment ? Ça, Wigner ne le dit pas. Mais les conséquences de sa position sont importantes : la réalité matérielle du monde serait déterminée par notre conscience, et celle-ci est unique (deux observateurs humains doivent percevoir la même chose). Cette solution peut être vue comme une variante de la solution « avec variables cachées », où le « paramètre supplémentaire » serait la conscience. Les avantages de cette solution sont les mêmes que la solution avec variables cachées, les inconvénients étant que - bien entendu - elle repose sur des notions non scientifiques (faute d'une définition scientifique de la conscience).

Une variante intéressante rend le résultat plus spectaculaire encore : un appareil photo prend une image du chat au bout d'une heure, puis la pièce contenant le chat est définitivement scellée (hublots fermés). La photographie ne serait quant à elle développée qu'un an plus tard. Or, ce n'est qu'à ce moment-là qu'une conscience humaine tranchera entre la vie ou la mort du chat. Le signal nerveux remonterait-il le temps pour décider de la vie ou de la mort du chat ? Cela peut paraître absurde, mais l'Expérience de Marlan Scully et le paradoxe EPR illustrent l'existence de rétroaction temporelles apparentes en physique quantique.


Et si le chat était un observateur ?

Dans la résolution du paradoxe du chat de Schrödinger, on considère que le chat n'a pas de conscience lui permettant de jouer le rôle d'observateur. On postule donc que l'expérience du chat de Schrödinger est équivalente à celle du baril de poudre d'Einstein. On peut également étudier le cas où l'observateur est conscient. Pour qu'il n'y ait pas de doute, c'est un être humain qui joue alors ce rôle.


L'ami de Wigner 

Dans cette variante imaginée par Eugene Wigner, un de ses amis observe le chat en permanence par un hublot. Cet ami aime les chats.

Donc la superposition d'états du chat mort/vivant conduirait à une superposition d'états de l'ami de Wigner triste/heureux, si l'on suppose qu'un observateur conscient peut également être mis dans un état superposé. La plupart des interprétations ci-dessus concluent au contraire que la superposition d'état serait brisée avant d'entraîner celle de l'ami de Wigner.


Le suicide quantique

Le suicide quantique propose qu'un être humain, capable de jouer le rôle d'observateur, prenne la place du chat. Cette situation pose problème aux interprétations faisant jouer un rôle à la conscience, car notre courageux volontaire ne peut avoir conscience par définition que d'être vivant . Cela entraîne de nouvelles questions.

Contrairement au cas du chat (non conscient, rappellons qu'en cas de doute sur ce sujet on peut remplacer le chat de Schrödinger par le baril de poudre d'Einstein), cette expérience conduirait à différents résultats selon les interprétations. Elle permettrait donc d'éliminer plusieurs interprétations si elle n'était pas irréalisable pour une multitude de raisons évidentes.


Interprétation de Wigner

L'interprétation de Wigner conduit à l'impossibilité de la mort de notre volontaire... qui doit donc interdire la désintégration de l'atome.

En effet, d'après Wigner, c'est la prise de conscience d'un état qui provoque, directement ou indirectement, l'effondrement de la fonction d'onde. La prise de conscience n'étant possible que dans le cas « vivant », cela rend impossible l'effondrement de la fonction d'onde dans l'état « mort » (en tout cas tant qu'il n'y a pas un « ami » de Wigner pour prendre conscience de l'état de l'expérimentateur).

Que se passe-t-il quand la probabilité de désintégration devient très proche de 1 ? Jusqu'à quand les atomes accepteront-ils de ne pas se désintègrer parce qu'un humain ne peut avoir conscience de sa propre mort ?


Cas des Univers Multiples d'Everett

Le cas du « suicide quantique » a été, à l'origine, imaginé pour contrer cette interprétation.

Cette interprétation fait également jouer un rôle à la conscience, car elle stipule qu'à chaque observation la conscience se « scinde » en autant d'univers que d'observations physiquement possibles…

Dans cette interprétation, il y a toujours au moins un univers dans lequel l'expérimentateur est vivant (à moins que la probabilité de mourir soit de 100 %). On pourrait dès lors se demander si la « conscience » ne bifurque pas systématiquement dans l'univers avec le résultat « vivant », menant à une sorte d' « immortalité quantique » ; l'auteur et acteur Norbert Aboudharane a brodé autour de ce thème sa pièce Le chat de Schrödinger.


Dans tous les cas, cette expérience de pensée et le paradoxe associé ont aujourd'hui pris valeur de symboles centraux de la physique quantique. Qu'ils servent à supporter un aspect de cette théorie ou qu'ils servent à défendre une option théorique divergente, ils sont appelés à la rescousse pratiquement à chaque fois que la difficile convergence entre la réalité macroscopique et la réalité microscopique (une situation caractéristique du monde quantique) est observée ou supposée.

Ce chat mort-vivant peut apparaître comme une expérience de pensée folle, mais c'est une bonne introduction à la complexité de la mécanique quantique. Il est aussi important de noter que c'est justement de la maîtrise des états de superposition et de la décohérence (et donc de la solution de ce paradoxe) que dépend la réalisation à long terme d'un ordinateur quantique.



Bibliographie

Erwin Schrödinger ; Physique quantique et représentation du monde, Collection Points-Sciences, Le Seuil (1992), ISBN 2-02-013319-9. Traduction française de deux articles de vulgarisation :
La situation actuelle en mécanique quantique (1935), article dans lequel apparaît le célèbre « chat de Schrödinger » pour la première fois.
Science et humanisme - La physique de notre temps (1951).
Serge Haroche, Jean-Michel Raimond & Michel Brune ; Le chat de Schrödinger se prête à l'expérience - Voir en direct le passage du monde quantique au monde classique, La Recherche 301 (Septembre 1997) 50.
Serge Haroche ; Une exploration au cœur du monde quantique, dans : Qu'est-ce que l'Univers ?, Vol. 4 de l'Université de Tous les Savoirs (sous la direction d'Yves Michaux), Odile Jacob (2001) 571.
Jean-Michel Raimond & Serge Haroche ; Monitoring the Decoherence of Mesoscopic Quantum Superpositions in a Cavity, séminaire Poincaré (Paris - 19 Novembre 2005). Texte complet disponible aux formats PostScript et pdf ici.
Roland Omnès ; Comprendre la mécanique quantique, EDP Sciences (2000) ISBN 2-86883-470-1. Par un professeur de physique théorique émérite de l'Université de Paris-Sud (Orsay), une discussion de l' interprétation de Copenhague de la mécanique quantique, du problème de la mesure et de la théorie des histoires consistantes de Griffiths et de la décohérence, par l'un de ses pionniers.
Wojciech Hubert Zurek ; Decoherence and the Transition from Quantum to Classical-Revisited, séminaire Poincaré (Paris - 19 Novembre 2005). Texte complet disponible aux formats PostScript et pdf ici.
Hans Dieter Zeh ; Roots and Fruits of Decoherence, séminaire Poincaré (Paris - 19 Novembre 2005). Texte complet disponible sur l'ArXiv : quant-ph/0512078.
E. Joos,, H.D. Zeh, C. Kiefer, D. Giulini, K. Kupsch, I.O. Stamatescu ; Decoherence and the Appearance of a Classical World in Quantum Theory, Springer-Verlag (1996). Deuxième édition (2003) ISBN 3-540-00390-8
Gennaro Auletta ; Foundation & Interpretation of Quantum Mechanics (in the light of a critical - historical analysis of the problems and of a synthesis of the results), Wolrd Scientific (2001) ISBN . Par un professeur de l'Université de Rome, un ouvrage monumental (environ 1000 pages) sur les fondements conceptuels de la mécanique quantique des origines à nos jours - y compris les questions de décohérence -, mis en relation avec les avancées expérimentales les plus récentes.
John R. Gribbin ; Le Chat de Schrödinger - physique quantique et réalité aux éditions Champs Flammarion. Ouvrage de vulgarisation contenant très peu ou pas de mathématiques, expliquant à travers des exemples concrets les concepts qu'apporte la physique quantique.
Spécial Hors-série Sciences et Avenir oct-nov. 2006, sur le paradoxe du chat de Schrödinger.

Notes et références

↑ article mentionnant cette première expérience, Le Figaro.fr, « La mesure d'un chat à la fois vivant et mort », 23 août 2007.
↑ (en) Résumé du dossier de la revue Nature du 16 août 2007 sur l'expérience, [1]
canardos
 
Message(s) : 18
Inscription : 23 Déc 2005, 16:16


Retour vers Sciences

Qui est en ligne ?

Utilisateur(s) parcourant ce forum : conformistepote et 20 invité(s)